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SIMULATION OF ICE-COVER GROWTH AND DECAY IN ONE DIMENSION
ON THE UPPER ST. LAWRENCE RIVER*

Gordon M. Greene

A series of models are presented for simulating the growth and
decay of channel ice in one dimension on the upper St. Lawrence
River. By assuming simplified boundary conditions and a linear tem-
perature gradient in the ice layer, I have been able to treat the
theory of ice growth analytically, producing the first group of
models. A less abstract approach was taken in the construction of
a deterministic surface energy balance model. This model simulates
the relevant energy fluxes at the upper and lower boundaries of the
snow/ice cover on the river. In addition, the model simulates the
diffusion of heat through the ice layer, permitting the absorption
of shortwave radiation within the ice and the use of a model time
step of less than 24 h.

A general description of ice growth and decay is given for the
reach of the river between the Moses-Saunders Power Dam at Cornwall,
Ont., and Lake Ontario. Simulation sites in both slow moving and
faster reaches of the river are discussed. Over the winter of 1975-
76, the analytic model produced results well correlated with
observed ice thickness during growth. During decay, the results
simulated in a slow moving reach are much closer to observed thick-
ness than are those simulated in a faster reach.

The energy balance model simulates a maximum ice thickness
that is 75 percent of the observed thickness. In addition, the
simulated maximum thickness occurs  2 weeks later than the observed
maximum. These shortcomings appear to be caused by model node geo-
metry and by the absence of turbulent heat transfer between the ice
and the river. The model does simulate ice-cover breakup within the
period when breakup was observed to occur. Sensitivity analysis of
the model suggests that the simulated results are mast sensitive to
variations in air temperature, water temperature, and net radiation.
Thermodynamic processes appear to be sufficient to produce breakup
without the additional simulation of mechanical forces.

1. INTRODUCTION

The decay and destruction of a river ice cover is a complex process
involving mechanical and thermal energy transfer between the ice, the water,
and the atmosphere. One measure of the level of understanding of this inter-
action is the degree to which the various processes can be simulated or
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modeled. The purpose of this paper is to describe the structure and applica-
tion of models designed to simulate the growth and decay of a highly abstract,
one-dimensional ice cover formed on the St. Lawrence River. In particular,
the study site is found on the international section of the river, running for
169 km between Lake Ontario and Cornwall, Ont.

The goal of simulation modeling is the accurate representation of complex
events, such as the decay of an ice cover. Once one has constructed a model
that adequately mimics past events, the model can be used to extend the simu-
lated processes into the future. The only restriction as to how far into the
future the model can accurately predict is the degree to which realistic in-
put variables can be forecast.

There are a number of reasons why the ability to predict ice decay rates
is important for the St. Lawrence River. Despite its role as a major trans-
portation corridor, the river is unusable for up to 4 months of the year. An
accurate projection of the river's opening date is important because of the
economic benefits of advance planning. For instance, ships from European
ports must time their departure so as to arrive at the St. Lawrence River as
soon as possible after the river is open for passage.

The second major economic function of the river is to generate elec-
tricity. Although maximum flow is desirable for power production at the
Moses-Saunders Power Dam (located just upstream of Cornwall), the river flow
must be controlled during the decay period to help ensure an orderly breakup.
A better prediction of breakup would lead to more accurate planning of power
generation.

Two basic approaches are possible when attempting to predict events. The
first approach is statistical, extrapolating from past records to predict
future events. For example, if accumulated degree-days are found to be well
correlated with the date of breakup, observers would only need to forecast one
variable, air temperature, to assign a probability to the projected date of
breakup. Such an approach, however, masks understanding of the various pro-
cesses at work in a decaying ice cover. In addition, the statistical approach
assumes stationarity for meteorological and hydrological conditions over time.
Recent work by Assel (1980) concerning trends in winter severity over the
Great Lakes points out the fallacy of this assumption.

Theoretical models, on the other hand, integrate understanding of all
relevant processes such that the models simulate both the intermediate steps
and the eventual outcomes. The theoretical models described in this work
couple the components of surface energy flux, the turbulent heat flux from the
river water, and the processes of heat transfer within the snow and ice
layers. These models then simulate changes in ice-cover thickness and tem-
peratures at fixed time intervals.

The advantage of such a model over the statistical approach is that one
can test the model to discern those processes that have the most influence on
the timing and magnitude of ice growth and decay. Prediction then becomes a
matter of forecasting only the most influential variables, not because they
correlate best with events, but because they have the most power to explain
future events.
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Before continuing, it is necessary to understand the various  ways the
word "breakup" is used in this study. In general, "breakup" has been used to
refer to both the set of processes causing the destruction of an ice cover and
to the time period over which those processes are occurring (Marshall, 1978).
To reduce ambiguity, this report uses "breakup" to refer to the processes of
melting, crystal structure deterioration, and the mechanical destruction
caused by the action of winds and currents. The phrase "breakup period"
refers to the time interval over which these processes are active. In
general, the phrase spans the time from maximum ice thickness to the complete
absence of ice in the river.

Qualifications are necessary, however, to keep the notion of breakup
period meaningful. In the climate of the St. Lawrence region, it is possible
to get mid-winter thaws and storms that break up the ice cover temporarily.
Only the last of these periods in the spring is considered to be the breakup
period.

The first date on which the river channel is completely ice-free is
termed the "breakup date," ending the breakup period. It must be noted,
however, that ice in the bays and shoreline areas can be found more than 3
weeks after the channel ice is gone from the river channel. Because of the
transportation emphasis of this study, the breakup date will only be defined
by the absence of channel ice. In addition, the model breakup date will be
defined as the date on which the model ice thickness is reduced to 0 cm.

There are many characteristics of river ice that obscure the processes
under study and hence the ability to model ice decay. As described by Ashton
(1978):

Much of the understanding of river ice that we presently have is
based on the assumption that river ice occurs in a steady or
quasi-steady state. This is far from the case. Instead, it
would be most accurate to summarize river ice processes as a
series of steady states that exist between short periods of
intense activity and change. These short periods, while most
significant in establishing the next steady state, are also the
most difficult to observe, analyze, predict, or otherwise
understand.

As a result of this uncertainty, breakup dates for rivers tend to be more
variable from year to year than do those for lake or sea ice under the same
climatic conditions (Bilello, 1980). River ice breakup is commonly described
as the result of two sets of processes. The first set brings about changes in
the ice cover itself, either by melting or by reducing the strength of the
ice. The second set are the products of increased flow on the ice cover,
i.e., the process of the ice being swept downstream. In order to adequately
predict the beginning of mechanical breakup, therefore, one would need to
monitor four determinant influences (Shulyakovskii, 1966): the state of the
ice cover before melt begins, the input of heat and radiation to the ice
cover, stream flow forces, and the resistance of the shores to ice drift.
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Unlike most rivers, however, the upper St. Lawrence has a number of
characteristics that help to maintain quasi-steady-state conditions on the
river. The source of water for the river is a large, deep reservoir, which
cools very slowly in autumn and warms slowly in spring. The temperatures
of the water flowing into the St. Lawrence, therefore, are much more stable
than one would find in a river with extensive headwaters and tributaries.
Additionally, the relative proportion of flow contributed by tributary streams
and rivers is small, ranging from 1 to 4 percent of the flow measured at
Cornwall.

The most significant influence on breakup characteristics, however, is
the St. Lawrence Seaway Power Project at Massena, N.Y. The operation of the
power dam at this site controls the outflow of the upper St. Lawrence and can
be used to a certain extent to attenuate the forces of breakup.

While a large body of literature exists concerning Arctic and sub-Arctic
rivers, little work has been done to analyze the ice cover of large rivers in
the temperate zone. Bilello (1980), for example, has surveyed the growth and
decay patterns of 16 Canadian and Alaskan rivers. Only sites north of 50"N
latitude were chosen, however, to avoid rivers with mid-winter thaw and
refreezing cycles. Michel (1973) and Williams (1970) have also described pat-
terns of decay in Canadian rivers, but avoided regulated rivers, such as the
St. Lawrence. An example of Russian work is that by Antonov et al. (1973),
classifying Siberian rivers into four types based on breakup characteristics.

Despite geographical differences, however, descriptions of the processes
at work in decaying ice are applicable to the St. Lawrence. In this area of
study, the literature is extensive. Ashton's work on heat transfer to river
ice (1973, 1978) is primarily theoretical, concentrating on the fluid dynamics
beneath the ice sheet. Others, such as Weeks and Dingman (1973), Michel
(1971), and Pivovarov (1973) have concentrated on the thermal processes that
shape the ice cover. Mechanical properties of river ice relevant to breakup
analysis are described by Korenlkov  (1970) and Bulatov (1973).

For ice on the St. Lawrence River itself, detailed year-to-year infor-
mation on ice conditions and river operations is contained in the Navigation
Season Extension Studies published by the St. Lawrence Seaway Authority, a
Canadian organization under the Marine Transportation Authority. Their
published reports start with the 1972-73 winter season and extend to the
present. The most comprehensive description of ice conditions and types on
the St. Lawrence River is contained in Marshall (1978).

The importance of transportation on the river has stimulated a large
number of studies of heat loss from the river as the water cools to the ice
point. The usual approach of these studies is to compute a total heat loss
coefficient that, when applied to estimated travel times and air - water tem-
perature differences, most accurately reflects the observed temperature drop.
This work was initiated by Barnes (1906) and revitalized by Kerry (1946).
Since then, a number of studies have attempted to refine the methods. Ince
and Ashe (1964) used empirical relationships between air temperature and the
heat budget components to compute total heat loss for the river over time.
Dingman et al. (1967, 1968) used a more theoretical approach to compute the
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heat budget terms in order to study how increased river water temperatures
could maintain ice-free stretches of the river. Witherspoon and Poulin (1970)
used the same approach except that they defined a cooling coefficient to
determine heat loss.

The energy balance model described in this paper extends this approach by
continuing to compute the relevant heat fluxes after ice has formed. The
magnitude and direction of the total flux then controls the rate of growth and
decay. Similar approaches have been used by Maykut and Untersteiner (1969)
for sea ice and by Anderson (1976) for a snow pack.

The model used for this study is derived from a surface energy balance
simulation described by Outcalt and Carlson (1975). Their model was also
applied in a modified form to simulate the thermal structure of Lake Ohrid,
Yugoslavia (Outcalt and Allen, 1980).

2. THEORETICAL CONSIDERATIONS OF ICE-COVER GROWTH AND DECAY

In order to discuss the theory of ice-cover growth and decay, it is help-
ful to examine a diagram of the system that controls the transfer of heat
from the river water through the ice and snow layers to the air. Figure 1
shows four layers extending from the river water to a height above the river
surface where meteorological observations are made. In between are the ice
layer and the snow layer.

Such a representation of the river ice system implies that a number of
assumptions have been made about the fluxes of mass and energy. The primary
assumption is that the ice cover is already in place. This report does not
consider the significant issue of how ice initially forms, either from the
energy balance viewpoint of forecasters (e.g., Adams, 1976) or from detailed
study of frail ice formation (e.g., Carstens, 1970; Michel, 1971).

Each layer is considered to be a homogenous material with uniform
properties. All mass and energy fluxes are considered only in the vertical
direction. Energy is assumed to be absorbed at idealized boundaries, which are
flat and have no thickness. The transfer of heat from the ice to the snow is
continuous.

Changes in mass are possible at either the upper or the lower surface of
the system. At the snow surface, snowfall can occur, as well as the melting
of snow and ice. At the lower boundary, ice growth and thaw will occur. All
forcing meteorological variables, such as air and water temperatures used to
compute surface energy fluxes, change in uniform, discrete time steps. The
thickness and structure of the ice cover is such that snow ice never forms.

It is assumed that no frazil ice collects at the bottom of the ice layer
and that the temperature at the ice/water interface, T,, is equal to O'C. All
water temperatures are considered to be homogeneous because of turbulent
mixing of the flow, except for a 5-cm boundary layer at the bottom of the ice
cover. No geothermal heat flux from the river bed is considered.
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FIGURE l.--Vertical section through river ice showing energy fhx?s.

The discussion of applicable theory has been divided into five sections:
a discussion of heat flux within the snow and ice layers, energy balance at
the ice/water boundary, energy balance at the snow/air boundary, ice growth,
and ice decay.

2.1 Heat Conduction in the Ice and Snow Cover

Vertical heat flow in simplified, homogenous materials can be summarized
by two equations. The first is the common defining equation for heat flux,
where

h



dT9=-K=. (1)

K is thermal conductivity (W m-l ' -'C ), T is temperature ("C), and Z
is depth (m).

Secondly, one can describe the change in heat flux with depth as

(2)

where C is thermal heat capacity (J mm3 "c-l) and t is time (6). By substi-
tution, and with the assumption that thermal conductivity is not a function of
depth, the general heat conduction equation in one dimension can be written

dT K d2T-=--.
dt C dZ2

(3)

Both numerical and analytical approaches can be used to solve equations
(1) and (2). For ease of solution, common analytical methods assume periodic
or step functions for the upper thermal boundary conditions and frequently
employ linear thermal gradients with no heat flux divergence. In this work,
only discrete step boundary conditions are considered. While the following
section describes the finite difference numerical method used in the model,
this section considers the application of analytical solutions to the river
ice system.

Under equilibrium conditions, when no flux divergence is taking place,
the temperature gradient through the ice layer is constant. Equation (1) can
be rewritten as

Ki(T -Ts)
Qi- ;, >

1

where T, and T, are the temperatures ("C) at the top and bottom of the ice
layer, respectively.

As will be discussed, however, there are a number of reasons why it is
desirable to allow flux divergence within the ice. In nature, shortwave
radiation absorbed within the ice cover functions as an internal heat source.
In this case, the governing heat conduction equation becomes
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dT-=
dt

(l.-A)e-kZ  , (5)

where k is the bulk extinction coefficient (m-l), A is surface albedo, and
Qsw is the shortwave radiation incident on the surface (W mm2). The right-
hand term thus produces heat flux divergence because the value decreases as
a function of depth.

2.2 Energy Balance at the Ice/Water Boundary

In figure 1 it can be see" that there are two energy fluxes at the
ice/water boundary: the flux of heat from the water to the ice, Qw (W m-2),
and the flux of heat within the ice cover, Qi (W III-~). These two fluxes are
related by the change in ice thickness

dZi
Qi - Qw = RAT I

where pi is ice density (kg ~a-~), and A is the latent heat of fusion (J kg-l).
Unlike turbulent transfer in the air, the transfer of heat beneath the ice
c"ver has received little attention. As a first approximation, one can reas""
that heat transfer is primarily a function of the temperature difference be-
tween the ice and the water

9~ = hi (Tw - Tm). (7)

where hi is an empirical turbulent transfer coefficient (W m-2 "C-l) and Tw is
the river water temperature.

Ashton (1979) gives a" empirical derivation of hi based on a description
of turbulent transfer in closed conduits. The basic form of the equation
relates the rate of transfer to the Reynolds and Prandtl numbers

- = B ReO*8prO*4hiR
Kw

(8)

where B is a" experimentally derived coefficient and R is the hydraulic
radius (m). By computing expected values of the Reynolds and Prandtl numbers
at 0°C and letting the hydraulic radius, R, equal half the water depth, Zw
(m), Ashton (1979) describes hi as a function of water speed and depth
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" 0.8

hi = Bi + .
Z"

(9)

One limitation t" this transfer coefficient is that the conduit walls are
assumed to be smooth. Especially in spring when water temperatures rise,
ripples form on the underside of the ice. transverse to the direction of flow.
Under these conditions, Bi may need to be increased by as much as 50 percent
in order for equation (8) t" correctly describe the rate of melt.

2.3 Energy Balance at the Snow/Air Boundary

Energy balance at the snow/air interface must be considered under two con-
ditions, with and without phase change. When no phase change is occurring, T,
is assumed to be less that 0°C. During spring melt, the upper snow layer or
the upper surface of the ice is melting and T, is fixed at 0°C. Considering the
first case, one can assume that the flux of heat to the surface from below must
equal the flux of heat leaving the sn"w surface under equilibrium conditions

Qs = -Qt . (10)

Qt (W m-2) is the sum of the relevant fluxes as defined by

Qt = Qrnl + Qh + Qle 1 (11)

where Qrnl is the net longwave radiation flux (shortwave radiation is
absorbed internally), Qh is sensible heat flux to the air, and Qle is latent
heat flux.

In discussing all fluxes, this paper follows the convention that any flux
away from the surface in either an upward or downward direction is negative.
The relevant equations for computing the net radiation flux and the turbulent
transfer of sensible and latent heat are outlined below.

2.3.1 Net Radiation

Net radiation is the steady-state balance of incoming to outgoing
longwave radiation.

Qrnl = Qrl - EU (Ts)4 P (17-j

where Q,.l is the atmospheric longwave radiation (W mT2), E is surface emis-
sivity, and CJ is the Stefan-Boltzmann constant.
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The description of atmospheric radiation from surface measurements
has remained a problem in microclimatology. While it is generally accepted
that clear sky values can be described as a function of air temperature
and water vapor near the ground's surface, these relationships are not
valid under cloudy conditions since the cloud base acts as a full radiator.
The generalized method of allowing for cloud c"vef (Sellers, 1965) iS
based on

Qrl = Qrl (1 + *n2).
clear sky

(13)

In this relationship, "n" is the fraction of sky covered with clouds and -a"
is a constant that allows for the decrease in cloud base temperature with
increasing cloud height.

But because cloud base height or even cloud type is not commonly
available for many sites, another method of adjusting for cloud presence must
be used. The method used here is based on the Anderson-Baker formulation
(1967), which was developed from and tested at a number of sites acr"ss the
United States.

Qrl = b(TJ4 - [(110.6 + 5.41(eaoa5 - esoe5) - 0.485 E] (E)2] (14)

The formulation of the above relationship is begun with the clear sky longwave
radiation as a function of screen level air temperature (T,), water vapor
pressure in the air (e,), and ground level water vapor pressure (es). A
station-specific adjustment term, E, a function of the long term relationship
between air temperature at the surface and at one level in the upper atmos-
phere, is then applied. Finally, the ratio of observed shortwave radiation,
Qsw, t" the potential clear sky shortwave radiation, Qswc, is applied as a
factor, decreasing the clear sky longwave radiation value.

At the one site in northeastern United States where observed atmospheric
longwave  radiation data are available (Lebanon, N.H.), Anderson and Baker
(1967) found a correlation coefficient of 0.92 between observed and estimated
daily longwave radiation "ver a 6-month winter period. Give" the fact that
shortwave radiation data are also needed for the surface energy balance model
and in the absence of specific cloud data, this Anderson-Baker method is used
here as a first approximation. Greene (1981) describes the equations used in
computing the solar geometry and atmospheric attenuation that define clear sky
shortwave radiation, Qswc.

2.3.2 Turbulent Transfer

A discussion of turbulent heat transfer t" the air in the mOst rigorous
form is outside the scope of this report. Excellent reviews are provided by
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Anderson (1976), Dyer (1974), and Male and &anger (1978). Instead, this sec-
tion concentrates on the determination of turbulent fluxes when only one level
of meteorological observation is available.

The basic equations for the vertical transfer of momentum (T), sensible
heat (Qh), and latent heat (Qle) are expressed as

dU
z = Pa% z

Qh = -PaCpDh $j

Qle = -Pam" 2

(15)

(16)

(17)

The D values are eddy diffusivities that can be considered analogous to molec-
ular diffusivities.

If these equations are integrated between Z, (m); the height at which
wind speed, air temperature, and water vapor observations are made; and Z, (m),
the aerodynamic roughness length, the transfer equations become

T = paC,U2 (18)

Qh = -P,cpChU(Ta - Ts) (19)

Qle = -p*hC,U(q, - qs) (20)

The C values are dimensionless numbers called bulk transfer coefficients.
Note that, although Z, is some distance above the surface where wind speed
becomes zero, the temperature and moisture conditions at Z, are assumed to be
the same as at the surface.

Under conditions of neutral stability over uniform surfaces, profiles can
be described by a logarithmic decay curve

11



By substitution it can be shown that

2
CM=*.

l”($l

(22)

Equation (21) suggests that the value of a transfer coefficient is a
function of the shape of the wind profile, which in turn is a function of
atmospheric stability. Quinn (1979) has described an extension of the bulk
transfer coefficient t” different stability conditions by reevaluating
equation (21) along the lines first described by Businger et al. (1971).

u = g (1” (E) - $1)

Using a similar line of reasoning,

T* - T, = T* (1" & - '4~~) ,

where T* is a scaling temperature defined by

Qh
T* = -(&,(-) .

P&p

(23)

(24)

(25)

The $ terms are derived as functions of a stability ratio, Z/L, where L
is the Monin-Obukhov length. Four stability classes are considered:

unstable Z/L < 0,

neutral Z/L = 0,

stable 0 < Z/L < 1, and

strongly stable Z/L > 1.

By substituting the right-hand side of equation (19) into equation (25),
substituting for T* in equation (24), and solving for ch, a stability correc-
ted bulk transfer coefficient can be found

12
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(26)ch = vK"*

"(l"(g) - $22)

By assuming that the transport mechanisms for sensible and latent heat are
similar, equation (26) is also valid for C&.

Most of the experimental studies that have been used for validating the
$ functions have been performed river bare ground or short vegetation. Few
studies have examined their use river snnw or ice, where one would frequently
expect strongly stable conditions.

Anderson (1976) describes a surface energy balance model that does
incorporate stability corrected turbulent flux relationships into a snow melt
model. While the model closely mimics observed snow melt, the lack of
observed turbulent fluxes prevents real validation.

Working in a prairie environment, Male and Granger (1978) have compared
various methods of determining turbulent transfer river snow with measured
fluxes. They found that the bulk transfer coefficient method can cause errors
when computing flux values river melting snnw surfaces. One explanation of the
error is that radiant heating of the air close to the snow pack creates a
temperature maximum a few centimeters above the surface rather than at the
surface. The effect of such a shift would reverse the direction of the cnm-
puted turbulent flux. Such an effect does not seem critical in the St.
Lawrence River area because mnst of the melt of the upper layer takes place
when the air temperature is greater than the assumed surface melt temperature
of 0°C.

A more serious conclusion from Male and Granger, however, is that the
bulk transfer equation may overestimate evaporation. They present some evi-
dence suggesting that the transfer mechanisms for latent and sensible heat
river melting snow are not equivalent as was assumed.

An approach simpler than the analytical determination of each of the tur-
bulent fluxes has often been used in energy balance simulations (e.g., Ince
and Ashe, 1964; Witherspoon and Poulin, 1970). Basically, Qt, the heat
leaving the surface, is considered to be a function of the temperature dif-
ference between the air and the water surface in a relation analogous to
equation (7)

Qt = h, CT, - Ta) (27)

Williams (1963) has best described the advantages and limitations of such an
approach. He points nut that the equation allows for heat transfer by convec-
tion and by net longwave  radiation. However, neither shortwave radiation nor
evaporation are direct functions of the air - surface temperature difference.
It can be correctly applied only in those cases where the shortwave radiation
net gain and evaporative loss are equal in magnitude.

13



2.4 Ice Growth

Analytically, it is difficult tn describe ice growth under all but the
most simplified conditions. A cnmmnn set of boundary conditions is that air
temperature is equal to the surface temperature (Qh = 0 W mm2) and does not
vary with time. Turbulent transfer between the river water and ice is
neglected and the snow layer is not present. substituting T, for T, and
substituting equation (4) into equation (6),

dZi
Pi*K =

Ki Urn - Ta)

zi *

Integration over time leads to the classic Stefan solution.

1
- Ta) dt]?

Note that this equation has the form

Zi = F (S)1'2 ,

(28)

(29)

(30)

where S is the accumulated freezing degree-days.

The effect of a snnw layer is to decrease the rate of growth. Using the
same boundary conditions and assuming that heat flux through the ice is equal
to the flux through the snow layer,

2 = CTrn - Ta)dZ.

pi' dt "i+s .
Ki Ks

(31)

After integration

K. 2K K
zit+l = [(zit  + 2 Z&2 +s Sl 112

KS
- (Zit +$&I , (32)

1 S
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where "t " and "t + 1" refer to the time interval. By using equation (27), one
can allow convective transfer tn take place from the snow/ice layer. The case
without a snow layer is

dZi Pm _ Ta)
Pihz=

zi+L *
Ki ha

With a snow layer, equation (31) becomes

dZi _ (Tm - TJ
Pih dt - zi z, --+r+;Ki s a

(33)

(34)

2.5 Ice Decay

As discussed in the introductory section, use of the word "breakup"
implies large-scale destructive processes. However, Michel (1971) points out
that two different sets of processes are occurring at different rates. The
first set includes the slow processes of weakening and melting of the ice
cover. For these processes the time scale is in days and weeks, with events
occurring primarily in the vertical dimension through the snow ice cover. The
second set of processes results in the cracking of the ice cover into floes
and their mnvement downstream. In this case, critical events occur over time
scales in minutes and days and must be considered in all three dimensions river
large reaches of the river at any one time.

As will be discussed in the chapter describing model applications, the
second set of processes are not particularly relevant to the St. Lawrence
River above Cornwall owing to the volume and regulation characteristics of the
flow. In this reach, breakup is largely a function of ice deterioration, with
thermal effects playing a large role (Marshall, 1978, 1979); therefore, dis-
cussion of ice decay will focus on the processes that weaken ice in one dimen-
sion. This includes snow melt, melting at the top and bottom of the ice
layer, absorption of shortwave radiation within the ice, and precipitation
effects.

The theory of snow melt is complex owing to the coupled flows of water,
water vapor, and energy and the corresponding change in the physical proper-
ties of the snow pack (Yen, 1969; Dybig, 1977). With increasing radiation
absorption and air temperature in spring, the snow surface warms to O"C,
at which point phase change can take place. Equation (10) becomes
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dZ
Qt+Qs= PS^+ (35)

Melt water produced at the surface infiltrates the snow pack, warming the
layer to the freezing point as the melt water refreezes. Once the snow pack
is isothermal, additional ablation lowers the snow surface. Equation (35)
also applies t" the upper ice surface "nce this snow layer is melted.

Spring rains also have a considerable effect on upper surface melt, even
though the thermal effects in one dimension of a given rainfall are minimal.
For example, 2.5 cm of rain with an average temperature of 10°C contains
enough heat t" melt 0.9 cm of snow initially at -5°C. The same rain falling
on the ice sheet could melt 0.3 cm of ice initially at -5°C. On the other
hand, rainfall causes considerable changes in the snow and ice-cover texture,
which in turn speed up other processes of decay. Among these are increased
snow density, cracking due t" the additional weight on the ice cover, and a
decrease in albedo due t" the ponding of water. In addition, the con-
centration of water flow on an irregular surface creates channels and sink
holes in the ice surface (Marshall, 1978).

Melting also occurs at the bottom of the ice layer. In using equation (6)
so far, the effects of Qw, turbulent transfer between the water and the ice,
have been ignored. While G is usually much smaller than Qi during the
ice growth period (Ashton, 1973), its effect is significant "nce water tem-
perature starts to rise. Ashton (1973) has developed an integrated form of
equation (6), with the boundary condition that maximum ice thickness, Z,,,,
occurs at time 0. Solving for the time interval,

Qwzi
-PiMZi  - Zmax) kipih(Trn - Ts) ' - ki(Tm  - Ts)

At =
Q" - (QJ2

1"
QwZmax *

(36)

l-
Ki(Tm - Ts)

By specifying the time interval of interest, it is possible to use
numerical methods to find an approximate solution for Z that represents the
ice thickness after a given period of bottom melt caused by turbulent
transfer. As noted above, ripples are commonly formed on the underside of the
ice, perpendicular t" the flow, which considerably alters the magnitude of
turbulent transfer (Ashton, 1978).

As shown in equation (5), all shortwave radiation not reflected at the
surface is assumed t" penetrate the ice cover. While a number of studies have
affirmed that the attenuation can be adequately described by Beer's law
(Maykut and Untersteiner,  1971; Maguire, 1975), the vertical heterogeneity in
river ice would preclude the use of a bulk extinction coefficient assumed
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to be constant with depth (Shishokin, 1969). Beer's law is used in the sur-
face energy balance model as a method of roughly describing the decrease in
radiation absorption with depth, but it should not be construed as physical
reality. In this work, the law is expressed as

Qz = Qsw (1. - A) emkz . (37)

Observation of ice candling in spring clearly shows that radiation is
absorbed along crystal boundaries, producing weakly bonded columns of ice per-
pendicular to the ice cover, with water along these crystal boundaries (Michel
and Ramseier, 1970). After sufficient weakening, a thick layer of ice can be
shattered by a sharp blow, such as by a floating ice floe.

Bulatov (1973) has attempted to quantify this decrease in strength. He
suggests that the strength of ice at a given cross section is proportional to
the relative area of solid phase

SIG-=1.-x,
SIG0 (38)

where X is the relative area occupied by a liquid. SIG is the melting ice
cover breaking stress, and SIG0 is the breaking stress at 0°C without the
effect of the absorbed radiation. Bulatov also describes this ratio as a
function of absorbed radiation

1. - x= (1. - (&)1'2 I2 , (39)

where ST is the amount of heat absorbed et a given depth and ST0 is the heat
equivalent of the ice if melted. He has found a range of 6.7 x lo7 to 23.0 x
LO7 .I mV3 for STO, but uses 1.84 x 108 .I me3 as an average representative of
the mean composition of reservoir and river ice.

3. SIMULATION MODELS OF ICE GROWTH AND DECAY

Two simulation models were constructed to simulate the growth and decay
of the ice cover on the St. Lawrence River. The first is a detailed surface
energy balance model that first computes energy transfer at the ice/air boun-
dary and then adjusts the thermal profile within the ice layer. The second
model combines the degree-day growth represented by equation (34) with the ice
melt caused by rising water temperature, as shown in equation (36). The
application of both models tn a site on the St. Lawrence is discussed in the
next section. This section discusses the construction and operation of each
of the models.
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3.1 Surface Energy Balance Model

This model is based on the energy balance relationship described by
equation (11). The principle feature of such a model is that it couples pro-
cesses occurring both in the air above the ice and in the water below the ice
with energy transfer within the snow/ice layers. Unlike the simplified analy-
tic solutions discussed in the theory section, this model permits finite dif-
ference solutions to the transfer of heat within the snow/ice layer. Ice
thickness as such is never the variable to be evaluated. Rather, a simple
check of the simulated temperature at each computation node determines whether
that node exists in the ice phase or not. Figure 2 shows the one-dimensional
structure assumed for the model operation. Computation node LICE is con-
sidered to be fixed, while LSNOW, LBOT, and LFIX change in accordance with
snowfall, ice growth, and melting, respectively. The height, Z,, of the
meteorological observations is considered as fixed, a valid assumption as long
as Z, is small compared tn Z,. Features of this model include the fact that
it allows for a wide range of atmospheric stability. In addition, it allows a
non-linear temperature gradient to evolve in the ice and permits shortwave
radiation to be absorbed internally rather than at the surface.

The particular temperature diffusion method used allows a large range of
time intervals and computation node geometries to be used within the model.
The choice of a daily time step and 2-cm computation node spacing was
suggested by the maximum ice aver observed, the availability of input data,
and the projected use of the model for breakup forecasts.

Input data needed for the model can be divided into three groups: ini-
tial conditions, forcing meteorological parameters, and physical constants.
The model starts on a given day with a known ice and snow layer thickness.
All computation nodes at or above LICE (or LSNOW, depending on the presence of
snow) are assigned the first day's air temperature, and all nodes below LBOT
are assigned the observed water temperature. The temperature at LBOT is O'C,
and all ice layer temperatures are interpolated between the surface tem-
perature and O'C.

In order for the model to operate, one must supply mean daily values of
wind speed, air temperature, dew point temperature, water temperature, and
total daily incident shortwave radiation. The first three variables are
measured at one height, a known distance above the surface. Model operation
assumes that each variable is constant over a 24-h period, with an instan-
taneous change to the next day's value. To justify equation (ll), one must
assume that an equilibrium surface temperature also exists for each day's con-
dition and also undergoes instantaneous change to a new steady state the next
day. In constrast, it is not necessary for temperature profiles in the
snow/ice layer to cnme to equilibrium each day. The section on model sen-
sitivity discusses the relative impact of each of these variables on model
operation.

Table 1 lists the physical constants employed in the model. Some of
these "c0"St*"tS- can show a considerable range of values in nature.
Therefore, sensitivity of the model to variations in van Karman's constant,
aerodynamic roughness length, and albedo are also considered.
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TABLE l.--Physical constants  used in the simulation models

Symbol Definition units

AT

AZ

E

DUST

0

vK

A

Ai

k

Z*

ZO

Ps

K"

Ki

K*

KS

a

Model time interval 8.64 x 10 s

Distance between model computatiOn
nodes

Station adjustment to equation (13)

Dust content of the atmosphere

2 cm

Stefan-Boltzmann constant

van Karma" constant

Snow albedo

Ice albedo

33. (Bolsenga, 1967)

1. particles cm-l

5.67 x 10-8 w mm2 Ke4

0.41 (Dyer, 1974)

0.85 (Bolsenga, 1977)

0.55 (Bolsenga, 1977)

Shortwave radiation bulk extinction
coefficient

tleight  of meteorological observations

Aerodynamic roughness length of snow

2.0 m-l (Shishokin, 1969)

10 m

Snow density

7.0 x 10e4 m (Michel, 1971)

350 kg mm3

Water thermal conductivity
(Sellers, 1965) 5.74 x 10-l W m-l "C-l

Ice thermal conductivity
(Sellers, 1965) 2.18 W m-l "C-l

Air thermal conductivity
(Sellers, 1965) 2.51 x 10e2 W m-l "C-l

Snow thermal conductivity
(Yen, 1969)

Thermal diffusivity  of Snow

2.68 x 10-l W m-l 'C-l

3.81 x 10m7 m2 s-l (Yen, 1969)

-
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Model output includes simulated surface temperature, net radiation flux,
turbulent fluxes, sensible heat flux with the snow/ice layer, snow thickness,
ice thickness, and the temperature at each of the model nodes in the snow and
ice layers.

3.1.1 Main Program (I)

The program GGRIV simulates river ice growth and decay using the surface
energy balance approach. The main program, outlined in figure 3, is com-
paratively simple, leaving the bulk of the computations to the subroutines
show" in figure 4 and described below. Within the main program there are
essentially three steps, which are repeated for each simulated day. Once the
initial conditions are described, these steps are: 1) read in the forcing
meteorological data, then 2) solve for the equilibrium surface temperature by
a call on SEARCH, and finally, 3) adjust the temperature profile in the
snow/ice layer. The rationale behind steps 2) and 3) need more discussion
before individual descriptions of each subroutine. In the equations used to
describe the fluxes impinging on the snow/ice surface, all variables except
T,, the surface temperature, are provided or could be derived. It is possible,
however, to use numerical methods to find the one temperature value that would
enable equation (11) to sum to zero.

START

4

READ  in forcing meteorological  variables

4

COMPUTE  surface  equilibrium temperature (SEARCH)

COMPUTE  new thermal  profile  in ice and snow  (TEVOL)

RECOMPUTE  ice thickness

4
LAST  PERIOD OF SIMULATION? - NO

4

YES

4
END

FIGURE 3.--Energy baLance model structure.
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SL(F&JX - SEC4)NT TRIMP H COND
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VAPORA
(IAi)

VAPORI
(IN

TURB LONGRAD
(IAiv) (IA’4

VAPORA
(IAii)

FIGURE 4.--Structure of

:Kp SOL TRAP
(IAvd) (IAve)

subroutines within energy balance model.

The surface temperature is then used as an upper boundary condition
necessary for the numerical solution of equation (3). With the upper boundary
fixed by Ts and the lower boundary fixed by the known water temperature
beneath the ice, it is possible to simulate the flow of heat through the snow
and ice leading to growth or decay.

3.1.2 Subroutine SEARCH (IA)

This subroutine keeps track of changes in the snow layer depth and
controls the search for the surface equilibrium temperature (Ts). First a
high and then a low estimate is made of the surface temperature. With each
estimate, a call is made on SLFLUX to compute the four energy balance
components. Their algebraic sum, BAL, is used with subroutine SECANT to
make the next estimate for surface temperature. Once BAL falls within an
acceptable range of 0 W m-2, the last estimate becomes the daily equilibrium
surface temperature. If Ts is greater than O'C, but a snow layer exists,
Ts is set equal to 0°C. Another call is made on SLFLUX, and SNOMLT is called
to determine how much ablation could take place.
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3.1.3 Subroutine SECANT (IB)

This subroutine is based on a numerical method for solving a set of equa-
tions transcendental in one variable (Beckett and Hurt, 1967), temperature in
this case. If f(T) equals BAL, the residual sum of the four energy balance
fluxes in equation (ll), then a new estimate for the temperature can be found
by

T, = T,-1 - ((CT,-1 - T,-z)*f(T,-l))/(f(T,-l)  - f&-2)), (40)

where n is the iteration number. This T, is returned to SEARCH and then sent
. to SLFLUX.

3.1.4 Subroutine SNOMLT (IC)

When the simulated equilibrium surface temperature is greater than O'C,
melt can take place. T, is reset to 0°C and heat exchanged by conduction,

QSP is assumed to be 0 W ID-~. The heat flux now available for melting is found
by restating equation (11) as

FLUXIN = RN + H + LE. (41)

The heat flux needed to bring each layer, DZ, of the snow pack to 0°C is com-
puted as

HCOUNT = (T(LSNOW) - T(L))*DZ*SNOCAP, (42)

where SNOCAP is the thermal heat capacity of the snow.

HCOUNT for each layer is then compared to FLUXIN, starting at the top of
the snow pack. When FLUXIN is no longer larger than HCOUNT for a layer, the
loop is ended, and the remaining FLUXIN is saved as RMDR, to be added to the
right side of equation (11) at the next iteration, with a new set of forcing
meteorological values. If surplus flux is available for melting during a
given time step (MELT = l), the amount removed by ablation, ABLA, is computed
.3S

ABLA = FLUXIN/(LH*SNODEN),

where LH is the latent heat of fusion and SNODEN is the snow density.
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3.1.5 Subroutines TEVOL (II) and TRIM? (IIA) and Function HCOND (IIB)

The diffusion of heat through the snow/ice layer is based on a fully
implicit solution to equation (3) described by Outcalt and Carlson (1975). In
finite-difference form, the equation becomes

t+1
T1

= T: + -+$ (T;+l + Tim1 - 2T;),
(Uz)

(44)

where superscript t refers to time and subscript 1 refers to computation node.
If the Fourier modulus, F, is defined as

F=-!?!k
(Aa2 ’

the above equation becomes

Tt+l t
1

= FTIT1 + (1 - 2F)T; + FT;+l .

(45)

(46)

In this explicit form, the model is unstable with an F greater than 0.5 since
that makes the central term in the above equation negative. The implicit
solution of Outcalt and Carlson (1975), however, reverses time and obtains a
stable solution in the following form

t t+1
Tl = -FT:+; + (1 + 2F)Tl

t+1
- FT1+1 * (47)

Variables needed to compute the diffusion of heat are

T(L)

Z(L)

temperature at each node

distance of each node from the upper reference
surface

DT time step.

In addition, the locations of the interfaces LBOT, LZ, LSURF, and LEQ, shown in
figure 2, are needed. Intermediate values supplied or computed within TEVOL
are
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DIF

XA, xw, XI

CON

CAP

FU

FB

A(L),B(L),C(L),D(L)

Cl

LF

WI)

thermal diffusivity

volume fractions of air, water, and ice,
respectively

thermal conductivity

volumetric heat capacity

upper Fourier modulus

lower Fourier modulus

vectors for the diffusion subroutine TRIMP

empirical parameter used to define the shape
of the temperature-heat capacity curve

latent heat of fusion

volume fraction thermal conductivity.

The first step in TEVOL is to define the thermal diffusivity at each com-
putation node. For the water and snow layers, this value is assigned. But
both volumetric heat capacity and thermal conductivity are functions of the
amount of water present when freezing takes place, and therefore diffusivity
must be derived for the ice layer. For heat capacity

XW = EXP(Cl*T(L))*(l.  - XA) (48)

XI = (1. -xw-x4) (49)

CAP = XW + 0.48*X1 + (LF*Cl*XW) (50)

Thermal conductivity, CON, is then computed within function HCOND as a func-
tion of the individual volume fraction thermal conductivities from equations
modified by Cutcalt (1977) from Philip and DeVries (1957).

3
1 S(I)*X(I)*HK(I)

I=1
CON = 3

1 s(I)*x(I)
I=1

(51)
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(53)

where (X(I), 1=1,3) represents the volume fractions of air, water, and ice.
The shape factor, S(I), is defined as

s(I) = (X(I)/WI)) .
3 (52)

1 (X(I)/WI))
I=1

Therefore, when phase change is taking place,

DIF = CON/CAP.

Restating equation (45), we now have

F = (DIF*DT)/(zN)~ , (54)

where ZN is the computation node spacing. The F values for each node are then
used to fill the vectors sent to TRIMP, where the implicit method described by
Outcalt and Carlson (1975) solves for T(L)

A(L) = C(L) = -F (55)

B(L) = 1. + 2F (56)

D(L) = T(L). (57)

One problem that occurs with a time step as large as 1 day is that the
abrupt changes in the meteorological variables from day to day can force tem-
peratures in the ice to appear to skip the interval between 0°C and -l’C,
where phase change effects are most pronounced. If this skip seems to occur,
the diffusivity is not decreased by the temporary increase in heat capacity,
and thus ice growth is abnormally fast. The use of Cl in the computation of
XW as a function of temperature extends the region where water still exists to
a point around -2.O”C.

3.1.6 Subroutine SLFLUX (IA)

This subroutine and its subsidiaries compute the four surface energy
balance components of equation (11). In addition, when the snow layer has
been melted it calls RADZ, computing the rise in temperature at each com-
putation node caused by the absorption of shortwave radiation. Qs is the only
flux actually computed within SLFLUX. The other fluxes are computed within
TURB and LONGRAD.
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3.1.7 Functions VAPOR1 (IAi) and VAPORA (IAii)

These functions compute the saturation vapor pressure (in mb) for a given
temperature at the snow/ice surface and in the air, respectively. The formula
used is based on a polynomial expression derived by Lowe (1977). Compared to
the standard Goff-Gratch formulations, Lowe's method is accurate, yet requires
much less computational time.

3.1.8 Subroutine RADZ (IAiii)

This subroutine supplies the right-hand term of equation (5), computing
the rise in temperature caused by shortwave radiation absorption, TRAD.

TRAU = RSN*(XK/C)*EXP(-XK*ZR) (58)

The selection of an appropriate bulk extinction coefficient (XK) is
a difficult problem for two reasons. One is the high sensitivity of TRAD
to this term. Secondly, few studies exist that report values for XK. In
this case, values were chosen from Maguire (1975), even though he only
measured radiation attenuation between 400 and 700 nm in ice on the Ottawa
River.

3.1.9 Subroutine TURB (IAiv)

This subroutine uses the method described by Quinn (1979) to allow for
atmospheric stability effects when computing Qh and 91,. An initial guess
is made for both the friction velocity, USTAR, and the Main-Obukov  length,
XL. These are then used to derive the $ factors, which in turn compute new
values for USTAR and XL. A numerical iteration is made in order to converge
computed $ values, stopping when the change becomes less than 0.1 percent.
The final USTAR is then used to compute the bulk transfer coefficient, Ch, as
described by equation (26). Equations (19) and (20) then compute Qh and Qle,
respectively.

3.1.10 Subroutine LONGRAD (IA") and Function BB (IAvi)

This subroutine computes net longwave radiation from mean daily values
of air temperature, moisture content, and the simulated surface temperature.
Longwave radiation received from the sky hemisphere is computed with equation
(13) from Anderson and Baker (1967). The value for E, the station adjustment
factor, is taken from Bolsenga (1967). In order to adjust for the effect of
cloud cover, it is also necessary to compute the ratio of received shortwave
radiation, Qsw, to potential shortwave radiation, Q,,,. Instantaneous values
at hourly intervals of Qswc are computed by subroutines SPATH and SOL. These
in turn are integrated into potential daily total by subroutine TRAP.
Function BB computes the blackbody radiation at the simulated surface tem-
perature with the Stefan-Boltzman  relationship.
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3.1.11 Subroutine TRAP

This subroutine is a numerical method for integration by the trapa-
zoidal rule. The code was taken directly from Beckett and Hurt (1967).

3.1.12 Subroutines SPATH and SOL

These subroutines are used to compute the potential shortwave radiation
received at the ice surface. SPATH, based on Sellers (1965), computes the
solar geometry at a given time. SOL first computes radiation received at a
surface "outside" the atmosphere and then adjusts for atmospheric attenuation
by absorption and scattering. The algorithm for attenuation is best described
in Outcalt and Carlson (1975). Note that hemispheric shortwave radiation,
HEM, includes both diffuse radiation and simulated backscattering from the
ice surface.

3.2 Analytical Models of Growth and Decay

In addition to the surface energy balance model, three analytical models
of ice growth and one model of ice melt were used to simulate ice processes on
the St. Lawrence River. Program DEGD (listed in appendix C) contains the ice
growth algorithms, and program MELT (listed in appendix D) simulates ice
ablation.

Within DEGD, HTOTl is the maximum possible ice growth as computed from
the integration of equation (28). The temperature at the bottom of the ice
slab, T,, is constant at O'C and the upper surface temperature is equivalent
to the daily mean air temperature. Freezing degree-days (DD2) were only accu-
mulated usually once actual ice growth had begun, in early January, rather
than in mid-November, when mean daily air temperatures below 0°C first
occurred.

Using the same assumption as equation (28) but allowing a snow layer to
accumulate, the model also computes HTOT5. Since equation (32) is only valid
for constant snow layer thickness, the model integrates step-wise, so that the
daily difference of air temperature and O"C, DELT, is used in place of S. H5
represents the incremental growth for that day.

As discussed above, it is also analytically possible to allow for tur-
bulent transfer from the ice surface, so that the surface temperature is no
longer set equal to the air temperature. Such an approach requires the use of
a transfer coefficient. Intuitively, such a coefficient would seem to be a
function of wind speed and ice thickness. As a first approximation, however,
a constant value of 11.6 W me2 'c-l was applied (Williams, 1963). This

equation (34) was computed within DEGD in finite difference form. Each day's
incremental growth was computed as

AZi = (0. - Ta) At
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so that

HTOT4 = Zi + AZj

Program MELT is based on Ashton's (1973) integration of equation (6) as
described by equation (36). Note that no snow layer is present and that T, is
presumed equal to T,. I& is computed from equations (9) and (7), where Bi
takes on the value 1622 W m-2.6 soe8 'C-l (Ashton, 1979).

The above equation must be solved for that Zi that brings the right-hand
side of the equation equal to the time interval. While the secant algorithm
already described could be used, a simpler approach was chosen. Small incre-
ments of NI, the initial ice thickness, were subtracted from NI and then
substituted into equation (36). Once the right-hand side came within an
acceptable range of the time interval, NI was redefined by the successful
choice for thickness.

Data requirements for all four of these models are extremely simple. For
the growth models, mean daily air temperature is the only required input data.
Physical constants are supplied internally. The only specification of initial
conditions is the day when ice growth started.

In the analytic melt model, mean daily air and water temperatures are
used. One specifies a water depth and current speed beneath the ice. This

speed is assumed constant over the simulation time period. In addition, the
model requires the maximum ice thickness and the date of its occurrence.
Table 2 compares the relative needs and products of models GGRIV, DEGD, and
MELT.

3.3 Comparison of the Models

The energy balance and analytic models differ in three areas. The
primary difference is that the energy balance model does not assume a linear
temperature gradient through the ice. The temperature diffusion scheme used
allows for the absorption of shortwave radiation in the ice cover.

A second difference is that the operation of the energy balance model is
co"ti"uo"s; that is, melting begins at the time of simulated maximum ice
thickness and not at the observed maximum.

Finally, the models differ in the boundary fluxes they incorporate. The
energy balance model incorporates all surface fluxes but conduction only be-
tween the ice and the water beneath. The analytic growth models excluded all
turbulent fluxes at both the upper and lower boundaries. The analytic melt
model includes turbulent transfer at the lower boundary but none at the upper
surface.

29



TABLE Z.--Comparison of model  requirements and products

Models Input data Initial conditions Output

GGRIV Tdp> T,, T,, us 9,” Thickness of initial Ice thickness,
cover, date of initial energy balance
cover fluxes, snow and

ice temperature

DEGD Ta Date to start accum-
ulating degree-days

Ice thickness

MELT T,, Tw Maximum ice thickness, Ice thickness
date of maximum ice
thickness

4. APPLICATION OF THE SIMULATION MODELS

As discussed in the introduction, the energy balance and analytic models
described were designed to be used on the St. Lawrence River, specifically on
the international section stretching between Cornwall and Lake Ontario.
Figure 5 shows the form of this section of the river, the principal towns, and
significant seaway structures. The upper reaches of the river between
Kingston, Ont., and Chippewa Bay are broad and filled with hundreds of
islands. The river then narrows down to a 65-km stretch extending as far as
Waddington, N.Y. Below this stretch, the river broadens into Lake St.
Lawrence, created by the Moses-Saunders Power Dam just upstream from Cornwall.

It is important to differentiate between the St. Lawrence River and the
St. Lawrence Seaway. While the river is the entire stretch of water just
described, the seaway is a system of man-made locks, canals, ice booms, the
Iroquois control dam, and the Moses-Saunders Power Dam that allows the river
to be used for commerical transportation. This work, except for ice boom
installation, was completed in 1958, considerably altering the hydrology of
the river. Operation of the seaway during its first winter demonstrated the
necessity of installing ice booms to further stabilize the ice cover in order
to decrease the amount of frazil generated in the river. Booms were sub-
sequently designed and used as part of the seaway operation.
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Prior to the completion of the Moses-Saunders Dam, the gradient of the
river was nuch steeper than its present value. Starting at Lake Ontario, the
river decreased in height very slowly until a sudden 3-m drop at the down-
stream end of Galop Island. From there, the river dropped another 25 m on its
way to Cornwall.

As a consequence of these gradient changes, the ice structure on the St.
Lawrence was much different than one finds currently. In early winter a
natural ice bridge would form, stretching between Prescott, Ont., on the
north bank and Ogdensburg, N.Y., on the south bank. The relatively flat
upper river water would freeze over behind this bridge. In the steep section
below this area, considerable frazil ice "as produced because the water "as
kept open by the rapids below Galop Island. This frail tended to collect and
jam near Cornwall, leading to spring floods (Acres American, Inc., 1978).

4.1 Current Ice Conditions

This section discusses the ice patterns currently characteristic of
the upper St. Lawrence River, both along its length and in cross sections.
This information is derived from field observations, examination of aerial
photographs, and reports by Marshall (1978, 1979).

In general, freeze-up on the St. Lawrence proceeds from the downstream
reaches up toward Lake Ontario. In an average winter, the upstream advance of
the ice cover from Montreal to Lake St. Lawrence takes 3-4 weeks, yet takes
only 2-10 days to cover a comparable distance from Lake St. Lawrence to Lake
Ontario. In a mild winter, freeze-up is usually complete by early February,
in an average winter by mid-January, and in the mOst severe cases, by late
December.

Looking at the river in cross section, one can discuss a number of stages
in the formation of ice. The shallow bays, occurring either naturally or at
the margins of the lakes created by the seaway, are the first areas to freeze.
With little or no water current, ice forms in a way analogous to lake ice.
This shallow water cover is in place roughly 30 days before the channel sec-
tions are ice covered. Ice thickness at the river margins is likely to be as
much as 20-30 percent greater than that found in mid-channel. The proportion
of lake ice to snow ice in a given vertical section also changes as one moves
from shore areas to mid-channel. The percentage of snow ice is greater close
to shore because of flooding though the hinge cracks at the edge of the ice
cover.

In the channel areas, ice-cover formation is different from the processes
found near shore. Frazil and slush gradually agglomerate into ice floes over
a period of weeks. These floes initially collect at the borders of the bay
ice or in places where the flow is constricted. As the area1 density
increases, they congeal into a solid ice cover, with a thickness ranging from
4 to 15 cm.

Secondary ice growth in the channel then occurs beneath the primary layer
over a 5-7-week period. In addition, snow saturated by rain or by river
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water rising through stress cracks freezes and forms snow ice. But even
during the most severe winters, the deep-channel portion of the river is not
completely ice covered. There are many regions where open water pools remain
owing to the upwelling of bottom currents caused by river bottom topography or
to flow over the dams at Iroquois, Ont., and Cornwall.

In general, ice decay in the international section of the river follows a
pattern opposite to that described for ice-cover formation; that is, the
uppermost reaches of the river are the first to become ice free. The breakup
of the ice cover is now much more orderly than in the period before the
construction of the seaway because of the lower gradient and the predominant
effect of thermal processes. The beginning of ice-cover erosion is determined
primarily by the rising river water temperature, which in turn depends on the
rate of decay of the Lake Ontario ice cover.

Initially, ice in the channel areas is weakened both by the internal
absorption of shortwave radiation (candling) and by the percolation of melt
water downward along the crystal boundaries. In addition, the ice cover melts
at the base as the water temperature increases and the current increases.
From the air, the thinner areas appear as dark patches and streaks in the ice
cover, usually concentrated near stretches of open water. As the ice weakens
between pools of open water, it begins to fail due to current action.

This ice becomes a moving stream of brash ice, breaking through zones of
weak ice or hanging up at the upstream edge of stronger ice. Eventually,
under the influence of currents, the moving brash is formed into strands of
ice that stretch over many miles. These individual chunks then melt owing to
increased absorbed solar radiation or convective heat transfer with air and
river water.

This general discussion of ice formation and decay on the St. Lawrence
River must also take into account the effect of the seaway. The operating
principle for the Moses-Saunders Dam is to maintain a stable ice cover, while
minimizing hydraulic head losses. This balance is critical because operating
the dam in a way that optimizes power production could create a river velocity
high enough to considerably delay ice-cover formation, allowing additional
frazil ice to form.

Ice booms are set in place at four locations when river temperatures at
the Moses-Saunders Dam reach 39'F. These booms are set at Ogdensburg-
Prescott to reinforce the formation of the natural ice bridge already
described, at Chimney Point, and in the Galop Island area, still the region pf
highest water velocity.

As air and water temperatures decrease in autumn, the length of water
generating frazil increases. This ice is caught at the power dam, the Galop
boom, and the Ogdensburg boom. Once the ice pack starts to consolidate at
these points, flow at the power dam is purposefully decreased to lower the
river velocity, increasing the speed of ice-cover formation. These manipula-
tions of the river outflow and subsequent changes in water level can be seen
in figures 6 and 7. Figure 6 shows the outflow from Lake St. Lawrence at the
Moses-Saunders Dam over the 1976 winter. There is a stiarp drop in the outflow

33



Lfl?
%I3

20
pi

ii.

98..4 I 1 I I I I I
0 . 0 2 0 . 0 I O . 0 loo.0

DAYSm&? DE&&R I, 1975
l ) D . O IQ.0

1 1
DEC AN FEB HRR RPR

NONTH

LAKE ST. LAWRENCE OUTFLOW

FIGURE 6.--Lake St. Lawrence outflow, 1975-76.



a..

7

-.-/--2
.i-:’-

--._----.._ -.._
?*.--

a.
i--. . ..____

3

0 c5w
zq
q&

gg
II-l

---, I I,___--------  0 0
Q :---.. -*..

:e.--..
e:

>

.--
o--..

-/)
-..-,0.

..--- 5
.-- o=

8’

y.-- _.--
-.

o-
..-

c,-.: I,

&
a,
.

06
Ai

4:
E

or.g =
e
is

.
2

I
::
2

*
2
1”
2

k

3

ti
.z

2

ii
s

.
8
I
G

2

z
h



in January, consequent with the consolidation of the ice cover in Lake St.
Lawrence. Figure 7 shows the river water level at Morrisburg, Ont., (30-k*
upstream from the dam) and at Long Sault Island (8-km upstream from the dam).

While the general water level paradoxically seems to follow the increases
and decreases of outflow, careful examination of the figures shows that sudden
drops in outflow create higher water levels. One must also remember that'the
natural pattern is of minimum flow in winter, rising to a maximum in summer.

In springtime, the role of the Moses-Saunders Dam in controlling outflow
is more complex than in January. Sudden changes in water level can be used to
collapse or break ice cover in Lake St. Lawrence, but there is also the risk
of jamming the ice against the dam, decreasing outflow considerably.

Icebreakers are also used to control the removal of ice in spring.
Generally, they are used to clear ice in the immediate vicinity of locks, but
they also cut paths as they travel upstream to the next structure. However,
there is no evidence from field observations or from aerial photographs that
the passage of a single ship through a low velocity area like Lake St.
Lawrence speeds breakup of that ice cover.

4.2 Model Testing Site and Time Period

In developing a simulation model, the ideal method of evaluating its per-
formance is to apply it first to a calibration period for optimizing any
empirical functions and then to a separate time period to validate its use.
The decision was made, however, to limit the initial evaluation to a period
for which there are reliable meteorological data from a site located at the
river's edge. These data were collected during winter 1975-76 at a small
meteorological station installed in August, 1975, for the St. Lawrence Seaway
Development Corporation. Although the system is currently being improved,
former problems with sensor maintenance allow only the first winter's data to
be used reliably.

Meteorological input data for the simulation models were provided by sen-
sors located at this same station, on a pier projecting into the river at
Ogdensburg. The instruments are located on a tower roughly 10 m above summer
water levels and rising 3 m above the roof level of the warehouse supporting
the tower. A paper tape punch and a line printer located inside the warehouse
record the hourly observations of air temperature, vapor pressure, wind speed,
and atmospheric pressure. Shortwave radiation incident on a horizontal sur-
face was accumulated for a 24-h period and reset to zero at midnight. Mean
daily averages from these observations for the period from September 1975 to
August 1976 are listed in appendix E. Table 3 lists the sensors and their
accuracy.

In addition to the meteorological parameters, mean daily river water tem-
perature is needed by the models. Daily readings are available for this time
period at two locations. The first is located 3 m below the surface (10-m
water depth) at a ship loading dock near Waddington. A second set of tem-
peratures is taken at the intake gates of the Moses-Saunders Dam at Cornwall.
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TABLE 3.--Meteorological  S~~SOPS at Ogdensburg station

Variable Sensor Accuracy

Air temperature Platinum resistance
thermometer in radiation
shield.

+l"c

Vapor pressure Lithium chloride dew cell
in radiation shield.

Less than 5%
when > O'C.
More than 10%
when < -20°C.

Wind speed ~-CUP anemometer
(3.0 m s-l threshold).

The 2rger of 10
cm s or 2%.

Shortwave Eppley precision
radiation pyranometer.

2%

In order to give a quantitative check of the model performance, ice
thickness data is also needed. This information has been gathered by the St.
Lawrence Seaway Authority (SLSA) in Cornwall at 28 sites along the ship chan-
nel between Montreal and Lake Ontario for every winter since 1971.

Figure 5 shows eight stations (with their St. Lawrence Seaway Authority
identification) in the vicinity of Ogdensburg and Lake St. Lawrence. These
sites were chosen as potential points of model verification given the location
of the input data sensors. Table 4 lists the observed thickness values for
the 1975-76 winter and notes those sites where ice thickness measurements were
terminated by icebreaker passage. The observations in table 4 are shown
graphically in figure 8.

A description of each station and its 1976 ice pattern should help to
clarify the variety of ice decay mechanisms on the river. All stations are
located in the middle of the shipping track or approximately over the deepest
portion of a cross section.

Station F-l is located in the middle of Lake St. Lawrence, roughly Zl-km
upstream from the Moses-Saunders 'Dam. Currents are slow in this section of
the river (no more than 1.0 m 6-l). Few if any pools occur in this section of
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TABLE 4.--Observed ice thickness (cm)winter 1g75-1i7;~~er  St. Lawrence River,

Julian Date 1976

station 22 27 36 41 55 69 76 83 89

F-l 34.9 45.7 53.3 57.1 61.0 64.8 50.4 38.7 Open
water

F-2 36.2 47.6 57.0 63.5 67.3 Unstable Ice
ice, PO01 floes
nearby

G-l 34.9 41.3 46.4 50.8 54.6 64.1 59.7 Icebreaker

G-2 34.3 43.2 50.8 54.6 57.1 61.0 59.1 Icebreaker

H-l No obs 32.4 38.1 41.3 Open water

H-2 No obs. 14.6 24.0 22.2 Open water

H-3 21.0 29.2 32.4 33.7 14.6 7.6 cm ice
broken by

H-4 7.6 27.3 22.2 22.2 10.2 icebreaker

the ice cover, and it is the only site to thaw in place with very little mecha-
nical action. Both this station and the next, F-2, are shown in figure 9.

Station F-2 is located at the downstream tip of Ogden Island in a region
known for its mid-winter hanging ice dams created by trapped frazil ice. As
a result of the faster currents in this area and the highly irregular under-
ice topography, open water pools frequently occur, as noted in table 4. While
a current faster than that at F-l should produce thinner ice than that found
at F-l, it is possible that an insulating layer of frail (observed frazil
thickness was around 60 cm), isothermal at O'C, allowed more rapid growth to
OCCUT.

Both stations G-l and G-2 are located just upstream of the Iroquois Dam
(usually left open in winter) in the narrow stretch of the upper St. Lawrence
River. Growth patterns were quite similar to station F-l, but an ice breaker
operating out of Iroquois, Ont., prevented observation of the decay pattern.

Station H-l is located roughly l-km upstream from G-2, but showed a much
different growth pattern. The ice was opened quite early by the downstream
growth of the large pool that usually forms on the north side of Galop
Island.
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St. Lawrence  River
from Leishman  Point
to Wilson Hill

Morrisburg, I
Ontario&w

Og\den Island  :.d Ice Thickness  Measuring  Station

Water Depth 0 - 6 feet

Water Depth 6- 24 feet

m Water Depth Greater than 24 feet

Scale  of Statute Miles

2 3 4 5

FWaddington ‘d Y’““n
New York

FIGURE 9.--St. Lawrence River from Leishmzn  Point to Wilson Hill Island.
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Station H-2 is upstream of @lop Island, but had a pattern similar to
that at H-l; the ice "as thawed by the encroachment of an upstream pool. Ice
growth "as only about 50 percent of that at H-l.

Stations H-3 and H-4 are both located upstream of the Ogdensburg-Prescott
boom. Ice here "as much thinner than that found at the F and G stations, pro-
bably because of the warmer water temperature. Note that the time of maximum
ice thickness "as about l-month earlier than that shown for the F and G
stations.

Given the form of these patterns, it "as decided to use observed thick-
ness values at station F-l for model testing. While stations H-4 and H-3
occur in stable ice areas, their distance from the Waddington or Moses-
Saunders water temperature sensors precluded their use. Stations F-2, H-2,
and H-l all were in areas subject to migrating or growing open water pools,
and thus it would have been difficult to include them in the model. Given the
input data available, stations G-l and G-2 would be the best sites for
modeling. Given that their pattern and overall thickness were similar to
those at F-l before icebreaking, the observed results from Lake St. Lawrence
are considered to be comparable.

4.3 Weather and Ice Conditions, Winter 1975-76

Because the model has been tested only over winter 1975-76, it is impor-
tant to place the weather and ice conditions in the context of the general
climatology. Although long term data have not been analyzed for Ogdensburg,
comparisons of the 1975-76 winter can be made for Kingston, 105-km upstream.

Figure 10 shows accumulated freezing degree-days for the period 1970-79
(adapted from Assel, 1980). The five severity classes were derived from 80
years of record. The two extremes each represent 5 percent of the observed
winters. The next two classes each include 15 percent of the winters, while
the "normal" class includes 60 percent of the cases. Accumulated freezing
degree-days for the 1976 winter at Kingston totaled 735, placing that winter
in the "normal" class. 740 freezing degree-days accumulated at the Ogdensburg
meteorological site during the same period, suggesting that the air tem-
peratures at the simulation site were also close to normal. Figure 11 shows
the daily trend of air temperatures and Waddington water temperature during
this period.

During this winter period, 33.3 cm of water fell as snow at Massena
Airport, a departure of 10.2 cm above normal (35 years of record). Over the
same period at Ogdensburg Airport, 65-km upstream, 15.7 cm of water fell as
snow, a departure of 6.8 cm below normal (84 years of record). No direct
measurements of snow fall thickness or density were recorded. The last
snowfall at both sites occurred on March 19. Between that snowfall and the
observed absence of ice on March 30, 1.5 cm and 1.7 cm of rain fell at Massena
and Ogdensburg, respectively.

Ice conditions, however, appeared to be somewhat mire severe than normal.
According to the Navigation Season Extension Study report for 1975-76:
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Winter ice cover had formed by December 19, 1975, in the South
Shore Canal, Montreal, and advanced upriver to Lake Ontario by
January 18. Ice conditions during mid-winter were more severe than
the previous three winters, being generally compared to 1972.
However, due to unusually mild weather, which persisted throughout
the last week of March and early April, the ice cover deteriorated
very quickly and the river was almost entirely ice free by April 2.

As determined from aerial photographs of the river, complete ice cover
formed in the Wilson Hill area between January 8, when the water was 50 per-
cent filled with ice floes, and January 12, when the ice cover became solid.
Likewise, breakup took place between March 26, when a solid cover was still in
place, and March 30, when the area was open water. Table 5 shows how these
dates compare to the eight winters between 1972-79. Note that breakup date
and maximum ice thickness are not well correlated. For example, both the 1975
and 1977 breakup occur at the same time, but the 1977 maximum ice cover was
almost twice as thick.

4.4 Simulation Results

4.4.1 Analytic Models

As described in the discussion of models, three analytic models were used
to simulate ice growth. Using wind speed and air temperature from Ogdensburg
and the average of the Waddington and the Moses-Saunders stations for water
temperature, the simulation results were matched against observed ice thick-
nesses at Wilson Hill. The results are shown in figure 12. The uppermost
curve represents the theoretically maximum amount of growth as predicted by
the Stefan solution to equation (28) when no snow is present. If snow is
allowed to accumulate up to the maximum of 8 cm observed on the ice, then
equation (32) can be applied ("TA = TS, SNOW").

The third approach was to allow turbulent transfer to take place between
ice and the atmosphere by applying equation (34) ("TA NOT = TS, SNOW"). This
curve most closely matches the observations. With snow, the Stefan solution
first overestimates and then underestimates growth.

All three of these ice growth relations were derived for lake ice with no
underice turbulent transfer. The good approximation of the models to ice
growth in this area is not surprising given the lake-like characteristics in
this reach of the river created by the Moses-Saunders Dam.

As figure 8 illustrates, however, other reaches of the river develop much
less ice. For example, the reach of river upstream from Ogdensburg, narrower
and with faster currents, had ice only half as thick as that in Lake St.
Lawrence. Michel's suggestion (1971) of the use of a factor in equation (30)
to adjust the Stefan solution to river conditions is also followed in figure
12. The lowest curve represents the theoretical maximum times a factor of
0.5, which Michel suggested for an "average river with snow." The resulting
values roughly match observations taken at station H, just upstream from
Ogdensburg.
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TABLE 5.--Breakup dates, Wiihn Hilt Island, 1972-79

Year Last evidence of
ice cover
(Julian date)

First evidence
of no ice
cover (Julian

date)

Maximum
thickness
(4

1972

1973

1974

1975

1976

1977

1978

1979

Mean

Standard
deviation

103 111 62

66 73 37

65 67 52

78 80 36

86 90 65

77 81 70

89 96 68

80 87 61

80.5 85.6 56.4

12.4 13.8 13.4

Breakup evidence from aerial photographs and Navigation Season Extension
Studies.

Ice thickness from data provided by the St. Lawrence Seaway Authority.
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FIGURE 12.--Ice growth simulated by analytic models.
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The first approach to simulating ice decay incorporates equation (36)
into a step-wise solution. Figure 13 compares the results of this simulation
with observations at station F-l adjacent to Wilson Hill Island. Estimating
the current as 50 cm s-l, the depth as 20 m, and starting with the observation
of 65 cm of ice on March 9, the model predicts the loss of all ice 2 days
prior to the first day no ice was observed.

Such results appear respectable given the assumptions used in the appli-
cation of the melt model to this site. Air temperatures from Ogdensburg were
assumed equal to those experienced at Wilson Bill. The water temperature used
was the average of the Waddington and the Moses-Saunders Dam temperatures.
Finally, there is a 7-day gap between the observation of 65 cm of ice on
March 9 and the next observation of 58 cm of ice on March 16. It is assumed
that the maximum thickness was that observed on the 9th.

Ashton's  work (1978) has shown that the underice formation of ripples
during spring melt increases the effective turbulent transfer of heat. He
points out that Bi may need to be increased by 50 percent to adequately simu-
late melt. The lowest curve in figure 13 shows the results of using a
Bi enlarged by 50 percent from plane surface values. This change speeds the
melt out of the ice layer by 4 days.

The Ashton decay model was also tested in a faster stretch of the river
above Ogdensburg.
s-1.

Spring currents in this area have been estiniated  at 150 cm
Observations at station H-3 showed 34 cm of ice on February 10,

decreasing to 15 cm on February 24. The model estimated much quicker decay,
showing complete melt by February 17. It is unknown, however, how signifi-
cantly water temperatures at H-3 vary from those measured at Waddington, 32-km
downstream.

4.4.2 Energy Balance Model

Figure 14 shows the result of applying the energy balance model to the
1975-76 winter period at station F-l near Wilson Hill Island. The model was
started with 4 cm of ice on January 9 and then was driven by the Ogdensburg
meteorological data. The simulated thickness increased by 20 cm within 5
days, but steadily slowed its rate of growth as the winter progressed and the
ice thickened. The simulated ice decay is sudden, dropping from a maximum of
48 cm on day 85 to 0 cm on day 89, corresponding to the midpoint of the period
when ice actually left this stretch of the river.

Figure 15 plots the observed air and the simulated ice surface tem-
peratures over the same period. The significant result to note in this figure
is the increased coupling between surface and air temperatures as the ice
thickens. Whereas temperature differences of up to 14°C are shown in
mid-January, this difference does not exceed 5'C in March, when the ice
thickness is 42 cm or thicker (except when air temperature is above O'C).

The two principal limitations of the simulated results are that the simu-
lated maximum ice thickness is only 75 percent of the observed thickness. In
addition, the simulated time of maximum thickness lags the observed time by
2 weeks. Consequently, the simulated ice decay is much more abrupt than that
observed.
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Special note should be made of the sensitivity of the model to com-
putation node spacing, Z, (figure 2). When node spacing was decreased from 2
cm to 1 cm, maximum ice thickness dropped from 40 cm to 38 cm. When node
spacing was increased to 4 cm, the maximum ice thickness produced was 60 cm.
Figure 16 shows the simulated growth and decay pattern when the node spacing
is 4 cm. Comparison with figure 14 shows that the greatest difference
occurred within the first week of growth, suggesting that the model did not
adjust well to the initial conditions. Despite the greater thickness, a
node spacing of 4 cm was not considered for the standard runs because the
model growth exceeds the theoretical maximum shown in figure 13 for the first
few weeks.

Table 7 shows that the simulated breakup date was less responsive to
variation in model parameters than was simulated maximum ice thickness. The
four most significant variables are the same as in table 6, with one
exception. Snow-cover thickness, Z,, has replaced water temperature as the
third most important variable. This may appear surprising until one realizes
that solar penetration is the major influence in the rate of ice decay in the
model. In the model, shortwave absorption within the ice occurs only after
the snow layer has melted. For example, as indicated in figure 16, the decay
of 60 cm of ice required only 2 days longer than the decay of 48 cm of ice.

As indicated in table 7, a water temperature variation of +0.5'C (with a
lower limit of O.Ol'C) had no effect on the breakup date. Such a result is
clearly unrealistic, but is possible with the model because &.,, turbulent
transfer between the ice and water, was not included.

5. DISCUSSION

As shown by the description of ice conditions found on the upper St.
Lawrence River, there is considerable variation in the influence of energy and
mass transfer processes on ice cover. The growth curves in figure 8
illustrate, however, that there are two general patterns of growth and decay:
those associated with regions of slower currents with stable ice cover and
those with regions of faster currents with either stable or unstable ice
COVer.

Examination of figures 12 and 13 shows that simulations based solely on
changes in air and water temperatures produce reasonable simulations of
observed ice thicknesses and breakup dates. The addition of a snow cover or
turbulent transfer mechanisms in the air made relatively little difference in
the simulation results.

In faster stretches of water, the addition of an empirical factor that
acknowledges the increasing influence of turbulent transfer with the water
allows growth to be accurately simulated. However, in these stretches, the
analytical method simulated ice decay at a rate much faster than actually
observed. One problem may have been the use of water temperature data from a
site 32-km away. Ashton (1978) and Ashton and Kennedy (1970) have emphasized
the influence of very small temperature variations on the rate of melt.
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TABLE 7.--Sensitivity analysis for energy balance model,
date of breakup

Sensitivity Relative importanCe

T, ("C)

Qrnl (W mm21

Z, Cd

Qsw W mw2)

Td ("c)

U (m 6-l)

T, ("c)

A (1%)

2, (4

vK

Cl

Z, (4

3.90

0.06

1.35

0.04

0.22

0.00

No effect

0.22

3.12

No effect

2.25

0.85

1.40

0.34

0.21

0.15

0.07

0.02

0.07

0.01

0.07

0.02
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As discussed previously, the surface energy balance model was applied to
only one site on the river, a region with relatively little current. FOlZ
this reason, turbulent heat exchange between the ice and water was not
included in the model. Consequently the ice growth simulated in figures 14
and 16 continued past the observed time of maximum thickness. However, the
internal,absorption of shortwave radiation after the snow layer has melted
quickly melts the ice.

One process ignored by the analytic models is the formation of snow ice.
Measurements made at stations F-l and F-2 during the 1975-76 winter show that
snow ice formed the upper 40 percent of the ice cover by the time of maximum
thickness. As Adams and Roulet (1980) have shown, snow cover can either inhi-
bit ice growth because of its insulating properties or accelerate growth when
cracking occurs and the snow becomes saturated.

In the energy balance model, this effect was adjusted for by allowing
only the observed maximum snow depth to accumulate; that is, even though
more than 150 cm of snow fell during winter, the snow layer in the model
built up to only 8 cm, the maximum amount observed. In this way, the rhythm
of ice growth deceleration and acceleration caused by snow falls and their
subsequent saturation are smoothed over by the model.

As discussed previously, the equations used in the analytic models
essentially simulate only the heat conduction and longwave  radiation
exchange processes. Turbulent transfer and shortwave radiation flux are
ignored. Sensitivity analysis of the energy balance model, however, suggests
that heat conduction and net longwave radiation are the most significant
PI-OCeSSe.9.

6. CONCLUSIONS

The general question guiding this report has been, "To what extent can
ice decay on the upper St. Lawrence River be simulated?" Two general types of
models have been constructed and applied to the river over the 1975-76 winter.
Analytic growth models based on the assumption of a linear temperature gra-
dient through the ice agreed closely with observed ice thickness. Addition of
snow cover or turbulent heat exchange with the air made relatively little dif-
ference in the simulation results. An analytic melt model produced a good
approximation of ice thickness and the breakup date in the lake-like stretches
of the river but not in the faster reaches where turbulent heat exchange bet-
ween the ice and water would be more significant.

The other type of model tested was a surface energy balance model, which
couples analysis of each of the relevant energy fluxes with a finite difference
temperature diffusion scheme. While this model accurately simulated breakup
dates in a slow current stretch of the river, it underestimated maximum ice
thickness. Ice decay was essentially a thermodynamic process, including loss
of ice at both the upper and lower surfaces and the internal absorption of
shortwave radiation. Given the success of a model incorporating only these
pl-OCfZSS~S, it was not necessary to allow for either turbulent exchange with
the water or for mechanical destruction of the ice cover.
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Results from these models clearly indicate the direction of future work.
Despite the apparent accuracy of the analytic models, their simplicity limits
the amount of probing that can be done into the key processes of longwave  and
shortwave absorption and turbulent heat transfer between the water and the ice
COVlZ?C. A surface energy balance model that incorporates that turbulent
transfer will mnre accurately portray the coupling of surface and underwater
processes. (Results of this modification are presented in Green, (1981).)

Such a model would also benefit from additional studies of water tem-
perature and radiation along the river. For example, water temperature sen-
sors at Kingston, and at the Moses-Saunders Power Dam show little or none of
the expected temperature drop over the 170 km between them. Is this caused by
sensor accuracy, location, or additional sources of heat for the river water?

On a larger scale, the heterogeneity of the ice cover in the vertical
direction needs to be considered because of its effects on both the transfer
of heat and the absorption of shortwave radiation. The energy balance model
already has this capacity, but lacks meaningful data from the river for
verification.

The sensitivity analysis demonstrated the significance of air temperature
and the radiation fluxes. In order to extend verification of the models to
other years, it would be necessary to compare data from other sites near the
river (e.g., Kingston, Montreal, Massena) with the Ogdensburg riverside site.
If these variables are well correlated over the winter period, it will be
possible to test a greater range of ice seasons.
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cP

ch

CID

C W

Dh

DID

DW

E

%

52

F

ha

K

Ki

53

k

Q

Qi

Qh

Ql,

QL-1

Albedo

Constant used in equation 8

Heat capacity (J KU-~ "C-l)

Specific heat of air at constant pressure (J kg-l "C-l)

Bulk transfer coefficient for sensible heat

Bulk transfer coefficient for momentum (drag coefficient)

Bulk transfer coefficient for latent heat

Eddy diffusivity for sensible heat (m* s-l)

Eddy diffusivity for momentum (m2 s-1)

Eddy diffusivity for latent heat (m* s-1)

Station adjustment term for equation 14

saturated vapor pressure at T, (mb)

Saturated vapor pressure at T, (mb)

Constant used in equation 30, also Fourier modulus

Heat transfer coefficient from ice to air
(W m-2 "c-1)

Heat transfer coefficient from water to ice
(W m-2 “c-1)

Thermal conductivity (W m-l "C-l)

Thermal conductivity of ice (W m-l "C-l)

Thermal conductivity of snow (W m-l "C-l)

Shortwave  radiation extinction coefficient (m-l)

Heat flux (W UN-~)

Flux in the ice layer (W m-2)

Sensible heat flux to the air (W m-*)

Latent heat flux to the air (W m-2)

Downward atmospheric longwave radiation (W mm2)
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I

Qrnl

QS

QS”

QSWC

Qt

Q”

QZ

qa

qs

R

T

T.9

TS

%

T"

t

U

U"

VK

Z

Z,
zi
Z*
ZO
zr

Net longwave radiation (W 179~~)

Sensible heat flux in snow layer (W m-*)

Incident shortwave radiation (W m-*)

Potential incident shortwave  radiation
with no cloud cover (W mm2)

Total net flux leaving the ice surface (W mw2)

Turbulent flux from river water to bottom of the
ice sheet (W m-*)

Flux of shortwave radiation received at depth z in snow/ice
layer

Specific humidity in the air (kg kg-l)

Specific humidity at the surface (kg kg-l)

Hydraulic radius (m)

Temperature ("C)

Air temperature ("C)

Surface temperature ("C)

Temperature at ice/water interface ("C)

Water temperature ("C)

Time (s)

Wind speed (m s-l)

Water speed (m s-l)

van Karman constant

Depth below the surface (m)

Height of meteorological observations (m)

Ice thickness (m)

Distance between computation modes (m)

Aerodynamic roughness length (m)

Depth of penetration by shortwave radiation (m)
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zs

z,
a

Snow layer thickness (m)

Depth of water (m)

Thermal diffusivity (m* 6-l)

Longwave emissivity

Latent heat of fusion (J Kg-l)

Density (kg me3)

Stefan-Boltzman  constant (W me2 Ke4)

Momentum flux per unit area (kg ra-l s-*)

Correction factor for atmospheric stability
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DIPIENSION BRL(Be).TGUS(BB)
K.KOUNT
Fl.BAL(K-21
F2.BnL(K-1)
Tl.TGUS(K-2)
TO.TGUS(K-11
~~:~~nT2-(((T2-TllIF2)/(Fa-Fl)l
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7 0

77

C
C

SUBWUTINE  SLFLUX(TnK.TS.
ll4,LE,ZICE.ZSNOU.FLAG.LBOl
ygxyMtt5;e)

REAL LE .  LHtnT
DIRENSION  T(5eel
y;;Lw;;11 4 4

.
TSK*fS*TK
IFCFLAG  L T  e ) G O  T O  78
a1n.n  55
1.-- - -

IF(ZSNO-u C T  e ) nLBa85
IF(TRK  C T  TK) ALE.0  48
RSN-SUNt(l  -nLB)
IF(ZSNOU  C T  0 ) G O  T O  78
IF (ZICE LE 0 1 GO TO 70
CALL RnDZ(LSNOU.LBOT.Z.RSN,T,LICE)

L1CE.P. .TDK.U . BllL

R5N.B
CONTINUE
RH.UPPORR(TDK,/URPORP(TM)
CALL LONGRAD(RLB,P.TDK.IDRV,TRK.RN.SUN.RLn.TS~
RN-RSNtRLN
CON.4  tE-3
IF(LSNOW LT L I C E  nND.T(LSNOW)  L T . 0  I C O N . 6  4E-4
5.~CON~DZ):~T~LSNOU*I)-T5~~XLVD
RIRDEN.0~34838t(P/TRK)rlE-3

:i’F:t..
E2’UfiPORA(TnK  1
El.WPORI(TSKI
0.(0.622fE2tRHl/(P- 37BIE2)
GC.(e 622SElXl.)/(P- 37BfEl)
LHEAT.672,
IF(TSK,GE.TK)  UfAT.598
CnLL TURB~TA*.TSI(.Zn.tO.O.OC.U.~IRDEN.LWEAT.H.LEl
BRL.RN+S+H+LE
RETLWN

END

SUBROUTINE SNORLT(T
DIMENSION T(50el
tfFUS.88
SNODEN-B 35
SttoCnP-0  481SNDDEN
M&WS~SNODEN

.
XLW.67e
T K . 2 7 3  1 6
T(LICE)*0

:(?CE-l ‘-e.

.LICE.TIIK

IF(,,ELT,EO  1) RtiDR.0
FL&I~~RLN+XHZ+XLEZ*RnDR

.
LFST.LSNOW+l
LLST.LICE-1
ABLR.O
XF(flELT  E O  1) nBLI(.FLUXIN/C!l
iFiRELT EQ 1) G O  T O  2 1
DO 20  L*LFST.LLST
MOUNT.<0 -T(L,)IDZ:SNOCnP
IF(HCOUNT  E O  0 ) G O  T O  2 0
IF(FLUXIN~GE  HCOUNT) T(L)‘0
IF(T(LI LT 8 ) PELT.8
IF(T(Ll G E  0  ) flELT.1
IFCFLUXIN  GE,HCOUNT)  FLUXIN.FLUXIN.
IF(FLUXIN  LT HCOUNT) RPIDR-FLUXIN
IFCFLUXIN  L T  HCOUNT) FLUXIN-
;;;;‘W;;;N  LT HCOUNTI G O  T O  2 1

CAYS,UIIC
WY,, I AIIY,.

nELT ‘.XHZ.

IFtflELT  E O  1) T(LICE)'T(LICE-1)m-m,  ,"..

7 0

, XLEZ

-HCOUNT

.RN.

.RLN. LSNOU. DZ

SUN.S.

mn I



:
SUBROUTINE SOL~RNCI.I(LTD.RU.DUST.PUAT.P,RLB.SUN,BEn,,.”ER.

,C”II..“l I
ANGRnD(DEG).DEG/57  2 9 5 5 7
OKER(nL.nLTD~*l~f~SIN~AL)r,l51~~nLTD+3~885,~tl-l  253,))
nx+twm(nNcI  I
nL.nmRnD(nLTD)
EXT.(2./RUtt2,tSINcnL)
IF(EXT.lE,e  , EXT.e,
Xn.OKER(nL.nLTD,r(P/le13  ,
nB5b0 089t(((P*xnviei3.me  7 5 ,

77

i-e~174a(((PunT~xm)~20  mte.6)
SCnT~-e.el3l~~~Trxn,rre,s,
BEnll.(C  ~RU~t2,ISIN~nIl~EXP~I)SD*SCnT~
IFOEnPI LE.8~ 1 B E A R . 0
RSCnT*O.51EXTt(l  -EXP(SCnT)l
DIFF.RSCnT
SOLAR.8EnMDIFF
BnCSKT-0.5*SOLRRInLB*(l  -EXP(SCRT,,
MEn.DIFF*BRCSKT
y;~~n”*“En

END

SUBROUTINE SPC)TH(XLnT.DEC.HR.5LOPE.EXPO.~LTD.RZFID,RNGI1
ANGRnD(DEG,.DECf57  2 9 5 5 7
ANCDEG(ROD,.RRDI57  2 9 5 5 7
WANCRRD((HR/24  ,136e  -180 ,
X.RNGRnD(XLnT)
D-nNCRnD(DEC,
E’nNGRnD(EXPO-188  ,
S’hNGRnDlSLOPEl
COSZ’SIN~X,tSIN(D,+COS~Xl~COS~D,:COSO
z-ncos~cosz  I
ZD.ANGDEC(Zl
SIN~‘~COS~D,$SIN(H,,/SINO
CO%-ISINlX,%COS(Z)-SIN(Dl,~~CO5~Xl~SIN~Z,,
n’RTnN2~SINn.COSn)
C~SI~~~S~S,~~~S~Z~~~IN~S,~~~NIZI:COS~A-EI
XI.nCOS(COSI  1

-XI,

E
SUBROUTINE TEUOL(T.Z.LSNOW.LICE.LZ.DT.TW)
DIIIENSI~N  T(5ee).z(5ee)
pfpI0~ n(588~.B(5ee~.c(5ee~.D(5ee)

.
AfLSNOU,.l
B(LSNOY,.l
C(LSNOUl.1
~~~~~~““““0’1

.
77
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B(LZ)‘l
C(LZ)*l,
~~~~‘;;‘y’

. -
L8NOLll*LSNW*l
D O  8e L.L8wu1.L2M1
zuO.(n~s(z(L~-z(L-l)))x2~
2~2~~n~s~t~L~-z~L*l~~~xl8.
IF(L LT,LICEl  DIF.39.E-4
IF(L.LT.LICE) QO T O  S O
IF(T(L).GE.O.O)  DIF*@,l
IF(t(L) u~e.el G O  T O  5B

.
~ff.~I~xn)tExP(ClIT(L))
x1.1.-xu-XR
DXDT.Cl:XU
CON~HCONWXU.XI.Xn)
CnP~xu+e,5:XI+8B  1DXDT
DIF.CON/CnP

50 CONTINUE
FU.(DIFIDT  ,/ZU2
Fb;Dr;:DT  )/ZB2

.
;;:;.~F;FU*FB

.
D(L).T(L,

80 CONTINUE
CPLL TRIflP(LSN0u.LZ.R.B.C.D.t)

92 ;;“I;;;“’

END
cv

SUBROUTINE TRnP(~.B.N.SUNB.XINTl

E
PROGRPn  F O R  NUflERICPlL  INTEMiM;ION  USING THE TRRPEZOIDAL  R U L E

FRO! BECKETT AND HURT.
~IM”M;~;  SUNB(241

.

se

77
E

XINT.0
X-w”
NPI-N-l
D O  52 I.l.NR
FX.SUNB(I,
~1~~,“1”‘+2  tFX

CGNTINUE
FX.SUNB(N,
XINT.(XINT+FX)Ml2

ERN

SUBROUTINE TRII’WP(NF.NL.n.B.C.D.T~
DIRENSION  n~5ee~.~~6ee~.c~6eo.D~699~
;;NE$~;ON  DETA~589l.O~RRR~608l.T~S~~~

.

rII:+:
&L-i
Gnl’l?lA(NFI.T(NF,
BETA(NF,.O  0
GRNllll(~l,.(D(Nl,-RlNl,ST(lu,,/B(Nll
BETR(Nl,.C(Nl  )/B(Nl,
D O  1 L’N2.pIl
DENOWB(L)-hLL,lBETntL-1,
GnfwncL,.fDcL)-~~L~tcnnun~L-l,,/DEm

1 ;ET$(;,;C;L,/DENOn
. ,

.
2 f’;~‘~K4flWL,-BETn1L,.TIL+l,

END

7 2



;U;W~~TINE  TURD~lAK.TS.ZR.ZO.O.Ot.U.AIRDEN.XLH.H.XLE~
.

F . 6  E4tl 4 4
$l;S~I2T(TAKtTS)

.
INITIAL GUESS FOR USTAR

E. PdtRIRDEN
~~UK:U~~~~LOC~ZR~ZO~~

FOR L
I/(C:(TRK-TS))

570796
_. - - - _ _.

9&l;;  ;flLOC(Il *Xl12  l*RLOC((l  +X1)0/2 1 - 2  tATRN(X)rl

ZRSLE
7 SVl.-6  2lZWXL

;TRONCLV STRBLE
IF(fA/XL CT.1~  1 SVl--5  2111 +nLOO(fA/xL))
SV2’6VI

COllPUTE USlM.TSTRRlR.XL
9 U6TRR~UtVK~~RLOC(ZR~ZO)-SVl)

XL.StlALOO~ZRlZO)-Sv2)~~ALoc1Zwt0)-Sv1)tt2
77

22 CONTINUE
CW~UKtUST~R/~Ut~ALOC~Z~~ZO~-SV2l~
H~CXUtCHt(TW-TS)tF
W+z~RDENtXLktCHtUt(O-OGltF

END
c
E

c I

gm~““‘”

END

,TKX(
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C
C

FUNCTION URPORI(TK)
c LOufi.P.JAfl U O L  1 6 1977

TC.TK-273  1 6
Be.6 1 8 9 1 7 7 9 5 6
B 1 . 5  83469897E-1
B2.1 826813402E-2
63.4 176223716E-4
84.5 824728282E-6
85.4 838803174E-2
26.1  232226984E-18
SATI.~2+TC:~Bl~TCt~B2+TCB~93+TCt~

184+TCt(25+86tTC)))))
1)8.6984 5 8 5 2 9 4
.u.-182 9839310
A2.2.133357675
A3.-l 288588973E-2
R4.4.393527233E-5
fi5-8.823923882E-a
h6.6.13682e929E-11
SLITU.~~TKt~Al+TKt(A2+TKt(A3*TKtl

lA4+TKl~A5+F,6tTK~)))l
I F ( T K . L T . 2 7 3  16) 0 0 T O  18
;;PO$'pJ

18 C O N T I N U E
UAPORI-SATI

2e pm:u~

FND
/EDF -"-

\
77

END OF F I L E
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Appendix C. ANALYTIC ICE GROWTH MODEL
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FM449

H3.B
WI;;‘:,

.
lml.8___ -
6NOU.B
5 N O F L . 8  /(2~t38~  1
D O  l e e  1.1.225
RERD(5.58)  IVR.IDW.U.TR.TW

IF(IVR,E0~75)  C O  T O  180

:
TURBULENT EXCHANCE  COEF BRSED  O N  WILLIA%K(1%31
U N I T S  O F  XHR A R E  CRL M-2 PIIN- C - l
XH0.24.fDT
DELT.0  -TA
IF(IVR,E0.75~0R  IDAV L T  10) G O  T O  98
IF(IDW C T  1081  G O  T O  9 0
DDl.DDl*DELT

C RSSUtlE THAT TR NOT EOURL 75 AND SNOW PRESENT
A.“2/1(5  2E-31168  ,
8 . 1  /XHP
SNOU.SNOU+SNOFL
IF(IDAV  C T  86) SNOW.0
C.SNOW/(  (6 4E-4)t60  1
H2.(DELTtDTI/((A+B+C)IDENtXLHl
HTOT2+!TOT2+H2

C RSSUPIE  TR.TS CIND S N O W  P R E S E N T
D=(HTOT3+(5  2E-316  4E-4ltSNOWl:t2
E.,2,t5 2E-3/lDENtXLH))tDELT1360@  t 2 4
F.,,TOT3+(5  2E-3/6 4E-4)tSNOW
H3.5ORT(D+E)-F
HTOT3.HTOT3+H3

C RSSUME THPT TII.TS &ND N O  S N O W
HTOTl. FRCtSORT(DDl1

90  CONTINUE
“RITE,6,6e, lVR.IDAV.TA.DDl.HTOTl.HTOT2~HTOT3
URITE(7.62)  IVR.IWIV.TA.DDl.HTOTl.HTOT2.HTOT3

lee ;y;;INUE

END
77
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Appendix D. ANALYTIC ICE DECAY MODEL
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SEC

DT.8 64E4
WI466
D O  l e e  r.l.lee
READ(S.Se) IDAV.TII.TU
IF(IDAV  LT,69  O R  IDAV C T  lBQ1 0 0  T O  102
IF,TR  E O  e ) Tn.4 el

.
::.:?27  tTW:,Utte~2~/lDtt0  2)
D O  98 5.1.502
N.NI-,Jte  88941
Tl-(-1 tDEN)tFUS:,N-NI)/OW
T2.'CONtDENlFUSt,TR-TSl/,OUtt2  1
T 3 . 1  -,OWtN)/(CONt,TR-TSJ)
T4.1 -,OWtNI)/,CONt,TR-TS))ic.i,,rr
IF,TS  LE B 1 GO TO 90
RS.Tl-T2l~LOC(T51
BRL.ABS,DT-RSI

IF,BAL L E  3808 ) 0 0  T O  9 1
CONTINUE
NT.H_
N-HZ180
WRITE,6.60)  1DW.J.TA.TW.N

ice c,~~~INUE
_.-.
END

/EOR
77
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Appendix E. METEOROLOGICAL INPUT DATA, OGDENSBLIRG, N.Y.
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